转自:
上一篇博文,基本算是给glibc的signal函数翻了个身。现在glibc的signal基本修正了传统的UNIX的一些弊端,我们说signal并没有我们想象的那么不堪。但是signal也有不尽人意的地方。比如信号处理期间,我们期望屏蔽某些信号,而不仅仅是屏蔽自身,这时候signal就不行了。信号既然是进程间通信IPC的一种机制,我们期望获取更多的信息,而不仅仅是signo,这时候signal/kill这个机制就基本不行了。 上面所说的都是signal的一些毛病,但是这些都不是致命的,致命的问题在于老的signal机制的不可靠。信号分成可靠性信号和非可靠性信号,并不是说用sigaction安装,用sigqueue发送的信号就是可靠性性信号,用signal安装,kill/tkill发送的信号就是非可靠性信号。这种理解是错误的。这在Linux环境进程间通信(二):信号(上)一文中讲的非常清楚了。 信号值位于[SIGRTMIN,SIGRTMAX] 之间的信号,就是可靠信号,位于[SIGHUP,SIGSYS]之间信号,都是非可靠性信号,与安装函数是signal还是sigaction无关,与发送函数是kill还是sigqueue无关。 1~31之间的所有信号都称为不可靠信号,原因就在于信号不可排队,如果kernel发现同一个信号已经有挂起信号,当前信号就会被丢弃,就好象从来没有被发送过一样,无法引起信号的传递,也无法让进程执行信号处理函数。这种实现的机理,造成了这些信号的不可靠。这正所谓:我本将心向明月,奈何明月照沟渠。 为了解决这个问题,Linux引入了实时信号,信号值在[32~64]区间内,或者称之为可靠信号。这种信号,kernel不会ignore,哪怕已经有了好多同一个信号,kernel会把新收到信号放入queue之中,等待被传递出去。 空口说白话,不是我们的风格,我现在用代码证明之。我参考了Linux Programming Interface 一书的例子,写了两个程序,一个是signal_receiver ,一个是signal_sender. 先看signal_receiver的code:
- manu@manu-hacks:~/code/c/self/signal$ cat signal_receiver.c
- #include <stdio.h>
- #include <stdlib.h>
- #include <unistd.h>
- #include <signal.h>
- #include <string.h>
- #include <errno.h>
- static int sig_cnt[NSIG];
- static volatile sig_atomic_t get_SIGINT = 0;
- void handler(int signo)
- {
- if(signo == SIGINT)
- get_SIGINT = 1;
- else
- sig_cnt[signo]++;
- }
- int main(int argc,char* argv[])
- {
- int i = 0;
- sigset_t blockall_mask ;
- sigset_t pending_mask ;
- sigset_t empty_mask ;
- printf("%s:PID is %ld\n",argv[0],getpid());
- for(i = 1; i < NSIG; i++)
- {
- if(i == SIGKILL || i == SIGSTOP)
- continue;
- if(signal(i,&handler) == SIG_ERR)
- {
- fprintf(stderr,"signal for signo(%d) failed (%s)\n",i,strerror(errno));
- // return -1;
- }
- }
- if(argc > 1)
- {
- int sleep_time = atoi(argv[1]);
- sigfillset(&blockall_mask);
- if(sigprocmask(SIG_SETMASK,&blockall_mask,NULL) == -1)
- {
- fprintf(stderr,"setprocmask to block all signal failed(%s)\n",strerror(errno));
- return -2;
- }
- printf("I will sleep %d second\n",sleep_time);
- sleep(sleep_time);
- if(sigpending(&pending_mask) == -1)
- {
- fprintf(stderr,"sigpending failed(%s)\n",strerror(errno));
- return -2;
- }
- for(i = 1 ; i < NSIG ; i++)
- {
- if(sigismember(&pending_mask,i))
- printf("signo(%d) :%s\n",i,strsignal(i));
- }
- sigemptyset(&empty_mask);
- if(sigprocmask(SIG_SETMASK,&empty_mask,NULL) == -1)
- {
- fprintf(stderr,"setprocmask to release all signal failed(%s)\n",strerror(errno));
- return -3;
- }
- }
- while(!get_SIGINT)
- continue ; //why not use pause ? I will explain later
- for(i = 1; i < NSIG ; i++)
- {
- if(sig_cnt[i] != 0 )
- {
- printf("%s:signal %d caught %d time%s\n",
- argv[0],i,sig_cnt[i],(sig_cnt[i] >1)?"s":"");
- }
- }
- return 0;
- }
因为我们知道,SIGKILL和SIGSTOP这两个信号是不能够定制自己的信号处理函数的,当然也不能block,原因很简单,OS或者说root才是final boss,必须有稳定终结进程的办法。假如所有的信号,进程都能ignore,OS如何终结进程? 这个signal_receiver会等待所有的信号,接收到某信号后,该信号的捕捉到的次数++,SIGINT会终结进程,进程退出前,会打印信号的捕捉统计。 如果进程有参数,表示sleep时间,signal_receiver会先屏蔽所有信号(当然,SIGKILL和SIGSTOP并不能被真正屏蔽)。然后sleep 一段时间后,取消信号屏蔽。我们可以想象,在信号屏蔽期间,我们收到的信号,都会在kernel记录下来,但是并不能delivery,这种信号称之挂起信号。如果在sleep期间或者说信号屏蔽期间,我收到SIGUSR1 这个信号1次和10000次,对内核来说,都是没差别的,因为后面的9999次都会被ignore掉。SIGUSR1属于不可靠信号,位图表示有没有挂起信号,有的话,直接ignore,没有的话,则记录在kernel。 然后我们看下,signal_sender:
- manu@manu-hacks:~/code/c/self/signal$ cat signal_sender.c
- #include <stdio.h>
- #include <stdlib.h>
- #include <getopt.h>
- #include <signal.h>
- #include <string.h>
- #include <errno.h>
- void usage()
- {
- fprintf(stderr,"USAGE:\n");
- fprintf(stderr,"--------------------------------\n");
- fprintf(stderr,"signal_sender pid signo times\n");
- }
- int main(int argc,char* argv[])
- {
- pid_t pid = -1 ;
- int signo = -1;
- int times = -1;
- int i ;
- if(argc < 4 )
- {
- usage();
- return -1;
- }
- pid = atol(argv[1]);
- signo = atoi(argv[2]);
- times = atoi(argv[3]);
- if(pid <= 0 || times < 0 || signo <1 ||signo >=64 ||signo == 32 || signo ==33)
- {
- usage();
- return -1;
- }
- printf("pid = %ld,signo = %d,times = %d\n",pid,signo,times);
- for( i = 0 ; i < times ; i++)
- {
- if(kill(pid,signo) == -1)
- {
- fprintf(stderr, "send signo(%d) to pid(%ld) failed,reason(%s)\n",signo,pid,strerror(errno));
- return -2;
- }
- }
- fprintf(stdout,"done\n");
- return 0;
- }
signal_sender需要三个参数,pid signo times,就是向拿个进程发送什么信号多少次的意思。如 signal_sender 1234 10 10000,含义是向pid=1234的 进程发送10号信号(SIGUSR1),连续发送10000次。 有这两个进程,我们就可以实验了 。
- manu@manu-hacks:~/code/c/self/signal$ ./signal_receiver &
- [1] 23416
- manu@manu-hacks:~/code/c/self/signal$ ./signal_receiver:PID is 23416
- signal for signo(32) failed (Invalid argument)
- signal for signo(33) failed (Invalid argument)
- manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 23416 10 10000
- pid = 23416,signo = 10,times = 10000
- done
- manu@manu-hacks:~/code/c/self/signal$ sleep 20 ; ./signal_sender 23416 2 1
- pid = 23416,signo = 2,times = 1
- done
- ./signal_receiver:signal 10 caught 2507 times
- [1]+ Done ./signal_receiver
signal_receiver等待signal的来临,singal_sender向其发送SIGUSR1 10000次,然后sleep 20秒,确保sig_receiver处理完成。但是我们发现,其实一共才caught信号SIGUSR1 2507次,7000多次的发送都丢失了,所以我们称SIGUSR1 是非可靠信号,存在丢信号的问题。 俗话说不怕不识货,就怕货比货 ,我们让可靠信号参战,看下效果:
- manu@manu-hacks:~/code/c/self/signal$ ./signal_receiver &
- [1] 26067
- ./signal_receiver:PID is 26067
- signal for signo(32) failed (Invalid argument)
- signal for signo(33) failed (Invalid argument)
- manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 26067 10 10000
- pid = 26067,signo = 10,times = 10000
- done
- manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 26067 36 10000
- pid = 26067,signo = 36,times = 10000
- done
- manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 26067 2 1
- pid = 26067,signo = 2,times = 1
- done
- ./signal_receiver:signal 10 caught 2879 times
- ./signal_receiver:signal 36 caught 10000 times
- [1]+ Done ./signal_receiver
可靠性信号36,发送10000次,signal_receiver全部收到,不可靠性信号10,共收到2879次。这个数字是不可预期的,取决于内核进程的调度。 这个如果还不够直观,我们在比较一次,让signal_receiver先屏蔽所有信号一段时间,如30s,然后解除屏蔽。
- manu@manu-hacks:~/code/c/self/signal$ ./signal_receiver 30 &
- [1] 27639
- manu@manu-hacks:~/code/c/self/signal$ ./signal_receiver:PID is 27639
- signal for signo(32) failed (Invalid argument)
- signal for signo(33) failed (Invalid argument)
- I will sleep 30 second
- manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 27639 10 10000
- pid = 27639,signo = 10,times = 10000
- done
- manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 27639 36 10000
- pid = 27639,signo = 36,times = 10000
- done
- manu@manu-hacks:~/code/c/self/signal$
- manu@manu-hacks:~/code/c/self/signal$ signo(10) :User defined signal 1
- signo(36) :Real-time signal 2
- manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 27639 2 1
- pid = 27639,signo = 2,times = 1
- done
- ./signal_receiver:signal 10 caught 1 time
- ./signal_receiver:signal 36 caught 10000 times
- [1]+ Done ./signal_receiver 30
这个比较反差比较大,不可靠signal10 共收到1次,可靠性信号36 共caught到10000次。原因就在于sigprocmask将所有的信号都屏蔽了,造成所有的信号都不能delivery。对1~31的信号,内核发现已经有相应的挂起信号,则ignore到新来的信号。但是可靠性信号则不同,会添加队列中去,尽管已经有了相同的信号。需要注意的是,signal pending有上限,并不能无限制的发:
- manu@manu-hacks:~/code/c/self/signal$ ulimit -a
- core file size (blocks, -c) 0
- data seg size (kbytes, -d) unlimited
- scheduling priority (-e) 0
- file size (blocks, -f) unlimited
- pending signals (-i) 15408
- max locked memory (kbytes, -l) 64
- max memory size (kbytes, -m) unlimited
- open files (-n) 1024
- pipe size (512 bytes, -p) 8
- POSIX message queues (bytes, -q) 819200
- real-time priority (-r) 0
- stack size (kbytes, -s) 8192
- cpu time (seconds, -t) unlimited
- max user processes (-u) 15408
- virtual memory (kbytes, -v) unlimited
- file locks (-x) unlimited
我发送100万,最终会收到15408个可靠信号:
- manu@manu-hacks:~/code/c/self/signal$ ./signal_receiver 30 &
- [1] 16488
- manu@manu-hacks:~/code/c/self/signal$ ./signal_receiver:PID is 16488
- signal for signo(32) failed (Invalid argument)
- signal for signo(33) failed (Invalid argument)
- I will sleep 30 second
- manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 16488 36 1000000
- pid = 16488,signo = 36,times = 1000000
- done
- manu@manu-hacks:~/code/c/self/signal$ signo(36) :Real-time signal 2
- manu@manu-hacks:~/code/c/self/signal$ ./signal_sender 16488 2 1
- pid = 16488,signo = 2,times = 1
- done
- ./signal_receiver:signal 36 caught 15408 times
- [1]+ Done ./signal_receiver 30
内核是怎么做到的? 上图是内核中signal相关的数据结构。其中task_struct中有sigpending类型的成员变量pending
- struct task_struct {
- volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
- void *stack;
- atomic_t usage;
- unsigned int flags; /* per process flags, defined below */
- unsigned int ptrace;
- ...
- ...
- /* signal handlers */
- struct signal_struct *signal;
- struct sighand_struct *sighand;
- sigset_t blocked, real_blocked;
- sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
- struct sigpending pending;
- ...
- }
- struct signal_struct {
- atomic_t sigcnt;
- atomic_t live;
- int nr_threads;
- ...
- ...
- /* shared signal handling: */
- struct sigpending shared_pending;
- ...
- }
- struct sigpending {
- struct list_head list;
- sigset_t signal;
- };
- #define _NSIG 64
- #ifdef __i386__
- # define _NSIG_BPW 32
- #else
- # define _NSIG_BPW 64
- #endif
- #define _NSIG_WORDS (_NSIG / _NSIG_BPW)
- typedef unsigned long old_sigset_t; /* at least 32 bits */
- typedef struct {
- unsigned long sig[_NSIG_WORDS];
- } sigset_t;
task_struct中的pending,和signal->shared_pending都是记录挂起信号的数据结构,读到此处,你可能会迷惑,为何有两个这样的结构。这牵扯到thread与信号的一些问题,我们此处简化,就认为是一个就好,后面讲述线程与信号关系的时候,再展开。 我们看到了,kill也好,tkill也罢,最终都走到了_send_signal.当然了kill系统调用根据pid的情况会分成多个分支如pid >0 pid = 0 pid=-1;pid < 0&pid !=-1,总之了,我的图只绘制了pid >0 的分支。tkill也有类似情况。 那么kernel是怎么做到的非可靠信号和可靠信号的的这些差别的呢?
- static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
- int group, int from_ancestor_ns)
- {
- struct sigpending *pending;
- struct sigqueue *q;
- int override_rlimit;
- int ret = 0, result;
- assert_spin_locked(&t->sighand->siglock);
- result = TRACE_SIGNAL_IGNORED;
- if (!prepare_signal(sig, t,
- from_ancestor_ns || (info == SEND_SIG_FORCED)))
- goto ret;
- pending = group ? &t->signal->shared_pending : &t->pending;
- /*
- * Short-circuit ignored signals and support queuing
- * exactly one non-rt signal, so that we can get more
- * detailed information about the cause of the signal.
- */
- result = TRACE_SIGNAL_ALREADY_PENDING;
- if (legacy_queue(pending, sig)) //如果是低于32的信号,并且已经在pending中出现了的信号,就直接返回了,ignore
- goto ret;
- result = TRACE_SIGNAL_DELIVERED;
- /*
- * fast-pathed signals for kernel-internal things like SIGSTOP
- * or SIGKILL.
- */
- if (info == SEND_SIG_FORCED)
- goto out_set;
- /*
- * Real-time signals must be queued if sent by sigqueue, or
- * some other real-time mechanism. It is implementation
- * defined whether kill() does so. We attempt to do so, on
- * the principle of least surprise, but since kill is not
- * allowed to fail with EAGAIN when low on memory we just
- * make sure at least one signal gets delivered and don't
- * pass on the info struct.
- */
- if (sig < SIGRTMIN)
- override_rlimit = (is_si_special(info) || info->si_code >= 0);
- else
- override_rlimit = 0;
- q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
- override_rlimit);
- if (q) {
- list_add_tail(&q->list, &pending->list);
- switch ((unsigned long) info) {
- case (unsigned long) SEND_SIG_NOINFO:
- q->info.si_signo = sig;
- q->info.si_errno = 0;
- q->info.si_code = SI_USER;
- q->info.si_pid = task_tgid_nr_ns(current,
- task_active_pid_ns(t));
- q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
- break;
- case (unsigned long) SEND_SIG_PRIV:
- q->info.si_signo = sig;
- q->info.si_errno = 0;
- q->info.si_code = SI_KERNEL;
- q->info.si_pid = 0;
- q->info.si_uid = 0;
- break;
- default:
- copy_siginfo(&q->info, info);
- if (from_ancestor_ns)
- q->info.si_pid = 0;
- break;
- }
- userns_fixup_signal_uid(&q->info, t);
- } else if (!is_si_special(info)) {
- if (sig >= SIGRTMIN && info->si_code != SI_USER) {
- /*
- * Queue overflow, abort. We may abort if the
- * signal was rt and sent by user using something
- * other than kill().
- */
- result = TRACE_SIGNAL_OVERFLOW_FAIL;
- ret = -EAGAIN;
- goto ret;
- } else {
- /*
- * This is a silent loss of information. We still
- * send the signal, but the *info bits are lost.
- */
- result = TRACE_SIGNAL_LOSE_INFO;
- }
- }
- out_set:
- signalfd_notify(t, sig);
- sigaddset(&pending->signal, sig); //加入位图
- complete_signal(sig, t, group);
- ret:
- trace_signal_generate(sig, info, t, group, result);
- return ret;
- }
- static inline int legacy_queue(struct sigpending *signals, int sig)
- {
- return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); //是不可靠信号,并且该信号已经存在挂起信号,
那么15408的限制是在哪里呢?在__sigqueue_alloc 里面。
- static struct sigqueue *
- __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
- {
- struct sigqueue *q = NULL;
- struct user_struct *user;
- /*
- * Protect access to @t credentials. This can go away when all
- * callers hold rcu read lock.
- */
- rcu_read_lock();
- user = get_uid(__task_cred(t)->user);
- atomic_inc(&user->sigpending); //计数器+1
- rcu_read_unlock();
- if (override_rlimit ||
- atomic_read(&user->sigpending) <=
- task_rlimit(t, RLIMIT_SIGPENDING)) {
- q = kmem_cache_alloc(sigqueue_cachep, flags);
- } else {
- print_dropped_signal(sig);
- }
- if (unlikely(q == NULL)) {
- atomic_dec(&user->sigpending);
- free_uid(user);
- } else {
- INIT_LIST_HEAD(&q->list);
- q->flags = 0;
- q->user = user;
- }
- return q;
- }
我们看到,legacy_queue就是用来判断是否是非可靠信号(signo低于32),并且相同signo值已经存在在挂起信号之中,如果是,直接返回。 而对于可靠信号,会分配一个sigqueue的结构,然后讲sigqueue链入到sigpending结构的中链表中。从而就不会丢失信号。当然对pending信号的总数作了限制,限制最多不可超过15408.当然了这个值是可以修改的: 参考文献: 1 Linux programming interface 2 深入理解linux内核 3 linux kernel 3.8.0 内核源码